Machine learning and deep learning-based decision making has become part of today's software. The goal of this work is to ensure that machine learning and deep learning-based systems are as trusted as traditional software. Traditional software is made dependable by following rigorous practice like static analysis, testing, debugging, verifying, and repairing throughout the development and maintenance life-cycle. Similarly for machine learning systems, we need to keep these models up to date so that their performance is not compromised. For this, current systems rely on scheduled re-training of these models as new data kicks in. In this work, we propose to measure the data drift that takes place when new data kicks in so that one can adaptively re-train the models whenever re-training is actually required irrespective of schedules. In addition to that, we generate various explanations at sentence level and dataset level to capture why a given payload text has drifted.
translated by 谷歌翻译
生成反事实测试箱是测试NLP模型并使其像传统软件一样坚固且可靠的重要主体。在生成测试箱时,所需的特性是能够以灵活的方式控制测试案例生成以测试各种故障案例并以目标方式解释和修复它们。在这个方向上,通过手动编写生成受控反事实的规则,在先前的作品中取得了重大进展。但是,这种方法需要大量的手动监督,并且缺乏轻松引入新控件的灵活性。由PPLM的插件方法令人印象深刻的灵活性的激励,我们建议将插件的框架带入反事实测试案例生成任务。我们介绍了Casper,这是一种插件的反事实生成框架,以生成满足需求目标属性的测试用例。我们的插件模型可以在给定任何属性模型的情况下引导测试案例生成过程,而无需对模型的属性特定培训。在实验中,我们表明Casper有效地生成了反事实文本,该文本遵循属性模型提供的转向,同时流利,多样化并保留原始内容。我们还表明,CASPER的生成的反事实可用于增强训练数据,从而固定并使测试模型更加可靠。
translated by 谷歌翻译
机器学习模型可能涉及决策边界,这些界限由于对规则和规则的更新而随时间而变化,例如在贷款批准或索赔管理中。然而,在这种情况下,可能需要足够的训练数据来累积时的时间,以便重新恢复模型以反映新的决策边界。虽然已经完成了加强现有决策边界的工作,但已经介绍了ML模型的决策边界应该改变的这些方案,以便反映新规则。在本文中,我们专注于用户提供的反馈规则作为加快ML模型更新过程的方式,我们正式介绍预处理训练数据的问题,以响应于反馈规则,使得模型一旦模型在预处理的数据上被培训,其决策边界与规则更紧密地对齐。为了解决这个问题,我们提出了一种新的数据增强方法,基于反馈规则的过采样技术。使用不同ML模型和现实世界数据集的广泛实验证明了该方法的有效性,特别是增强的好处和处理许多反馈规则的能力。
translated by 谷歌翻译
机器学习模型的增加越来越多地提出了这些模型的可靠性问题。目前具有限制数据的测试实践通常不足。在本文中,我们为自动化测试数据合成提供了一种框架,以测试黑盒ML / DL型号。我们解决了利用模型不可知覆盖标准生成现实用户可控数据的重要挑战,以测试各种属性,基本上是增加对机器学习模型的信任。我们通过实验展示了我们技术的有效性。
translated by 谷歌翻译
Transformer-based language models have been shown to be highly effective for several NLP tasks. In this paper, we consider three transformer models, BERT, RoBERTa, and XLNet, in both small and large version, and investigate how faithful their representations are with respect to the semantic content of texts. We formalize a notion of semantic faithfulness, in which the semantic content of a text should causally figure in a model's inferences in question answering. We then test this notion by observing a model's behavior on answering questions about a story after performing two novel semantic interventions -- deletion intervention and negation intervention. While transformer models achieve high performance on standard question answering tasks, we show that they fail to be semantically faithful once we perform these interventions for a significant number of cases (~50% for deletion intervention, and ~20% drop in accuracy for negation intervention). We then propose an intervention-based training regime that can mitigate the undesirable effects for deletion intervention by a significant margin (from ~50% to ~6%). We analyze the inner-workings of the models to better understand the effectiveness of intervention-based training for deletion intervention. But we show that this training does not attenuate other aspects of semantic unfaithfulness such as the models' inability to deal with negation intervention or to capture the predicate-argument structure of texts. We also test InstructGPT, via prompting, for its ability to handle the two interventions and to capture predicate-argument structure. While InstructGPT models do achieve very high performance on predicate-argument structure task, they fail to respond adequately to our deletion and negation interventions.
translated by 谷歌翻译
Prompting large language models has enabled significant recent progress in multi-step reasoning over text. However, when applied to text generation from semi-structured data (e.g., graphs or tables), these methods typically suffer from low semantic coverage, hallucination, and logical inconsistency. We propose MURMUR, a neuro-symbolic modular approach to text generation from semi-structured data with multi-step reasoning. MURMUR is a best-first search method that generates reasoning paths using: (1) neural and symbolic modules with specific linguistic and logical skills, (2) a grammar whose production rules define valid compositions of modules, and (3) value functions that assess the quality of each reasoning step. We conduct experiments on two diverse data-to-text generation tasks like WebNLG and LogicNLG. These tasks differ in their data representations (graphs and tables) and span multiple linguistic and logical skills. MURMUR obtains significant improvements over recent few-shot baselines like direct prompting and chain-of-thought prompting, while also achieving comparable performance to fine-tuned GPT-2 on out-of-domain data. Moreover, human evaluation shows that MURMUR generates highly faithful and correct reasoning paths that lead to 26% more logically consistent summaries on LogicNLG, compared to direct prompting.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Flooding is one of the most disastrous natural hazards, responsible for substantial economic losses. A predictive model for flood-induced financial damages is useful for many applications such as climate change adaptation planning and insurance underwriting. This research assesses the predictive capability of regressors constructed on the National Flood Insurance Program (NFIP) dataset using neural networks (Conditional Generative Adversarial Networks), decision trees (Extreme Gradient Boosting), and kernel-based regressors (Gaussian Process). The assessment highlights the most informative predictors for regression. The distribution for claims amount inference is modeled with a Burr distribution permitting the introduction of a bias correction scheme and increasing the regressor's predictive capability. Aiming to study the interaction with physical variables, we incorporate Daymet rainfall estimation to NFIP as an additional predictor. A study on the coastal counties in the eight US South-West states resulted in an $R^2=0.807$. Further analysis of 11 counties with a significant number of claims in the NFIP dataset reveals that Extreme Gradient Boosting provides the best results, that bias correction significantly improves the similarity with the reference distribution, and that the rainfall predictor strengthens the regressor performance.
translated by 谷歌翻译
Deep Learning and Machine Learning based models have become extremely popular in text processing and information retrieval. However, the non-linear structures present inside the networks make these models largely inscrutable. A significant body of research has focused on increasing the transparency of these models. This article provides a broad overview of research on the explainability and interpretability of natural language processing and information retrieval methods. More specifically, we survey approaches that have been applied to explain word embeddings, sequence modeling, attention modules, transformers, BERT, and document ranking. The concluding section suggests some possible directions for future research on this topic.
translated by 谷歌翻译
The internet has had a dramatic effect on the healthcare industry, allowing documents to be saved, shared, and managed digitally. This has made it easier to locate and share important data, improving patient care and providing more opportunities for medical studies. As there is so much data accessible to doctors and patients alike, summarizing it has become increasingly necessary - this has been supported through the introduction of deep learning and transformer-based networks, which have boosted the sector significantly in recent years. This paper gives a comprehensive survey of the current techniques and trends in medical summarization
translated by 谷歌翻译